
Digital Dice

RK

March 28, 2015

Abstract

This document contains a brief summary and R code to solve all the puzzles from the book“Digital Dice”.

1

Digital Dice

Contents

1 The Clumsy Dishwasher Problem 4

2 Will Lil and Bill meet at the Malt Shop? 5

3 A Parallel Parking Question 6

4 A Curious Coin-Flipping Game 7

5 The Gamow-Stern Elevator Puzzle 9

6 Steve’s Elevator Problem 11

7 The Pipe Smoker’s Discovery 12

8 A Toilet Paper Dilemma 16

9 The Forgetful Burglar problem 18

10 The Umbrella Quandary 19

11 The case of missing senator 22

12 How many runners in a marathon ? 23

13 A Police Patrol Problem 25

14 Parrondo’s Paradox 28

15 How Long Is the Wait to Get the Potato Salad ? 31

16 The Appeals Court Paradox 42

17 Waiting for Buses 43

18 Waiting for Stoplights 45

19 Electing Emperors and Popes 48

20 An Optimal Stopping Problem 49

21 Chain Reactions, Branching Processes, and Baby Boys 54

2

Digital Dice

Summary

In the last few decades, enormous computational speed has become accessible to many. Modern day desktop

has good enough memory and processing speed that enables a data analyst to compute probabilities and

perform statistical inference by writing computer programs. In this context, the book can serve as a starting

point to anyone who wishes to explore the subject of computational probability.

This book has 21 puzzles that can be solved via simulation. Solving a puzzle has its own advantages. Give a

dataset with one dependent variable and a set of predictors to a dozen people asking them to fit a regression

model; I bet that you will see at least a dozen models, each of which could be argued as a plausible model.

Puzzles are different. There are constraints put around the problem that you are forced to get that ONE

RIGHT solution to the problem. In doing so, you develop much more sophisticated thinking skills.

I have thoroughly enjoyed working through this book. In the introductory chapter, the author provides a

basic framework for computational probability by showing ways to simulate and compute probabilities. This

introductory chapter gives to the reader all the ammunition required to solve the various puzzles of the book.

The author provides detailed solutions that includes relevant MATLAB code, to all the 21 puzzles.

Some of my favorite puzzles from the book that are enlightening as well as sometimes paradoxical are :

� The Gamow-Stern Elevator

� The Pipe Smoker’s Discovery

� A Toilet Paper Dilemma - I liked this puzzle a lot as it exposed my faulty thinking

� Parrondo’s Paradox - This was quite a perplexing result

� How Long Is the Wait to Get the Potato Salad ? The question was easy but my code is clumsy. Need

to refine it some day

� The Appeals court Paradox - Another one of those quirky aspects of probability that challenges one’s

mental models

What’s in this document?

I have written R code that aims to computationally solve each of the puzzles in the book. For each puzzle,

there are two subsections. First subsection spells out my attempt at solving the puzzle. The second subsection

contains my learnings from reading through the solution given by the author. The author provides extremely

detailed MATLAB code that anyone who has no exposure to MATLAB can also understand. In many cases I

found that the code snippets in the book looked like pseudo code, given the elaborate nature of the code.

There are many good references mentioned for each of the puzzle solutions so that interested readers can explore

further aspects. In most of the cases, the reader realizes that closed form solutions are extremely tedious to

derive and simulation based procedures make it easy to obtain solutions to many intractable problems.

3

Digital Dice

1 The Clumsy Dishwasher Problem

My attempt

The closed form solution for this puzzle is{
(1/5)5 +

(
5

1

)
(1/5)4(4/5)

}
= 21/3125 = 0.00672

The following single line of code gives the same result via simulation :

puzzle_1_results <- mean(replicate(1000000, sum(sample(1:5, 5, replace = TRUE) ==1) >=4))

print(puzzle_1_results)

[1] 0.006602

If you assume that everyone has equal probability of breaking the dish, the probability of a specific person

breaking it is 0.0066. Since this is an extreme small probability, it is highly likely that the identified person is

indeed clumsy.

Learning

The author’s approach is similar to mine.

4

Digital Dice

2 Will Lil and Bill meet at the Malt Shop?

My attempt

One can solve this via computing the area inside a square which corresponds to the situation that Lil and Bill

meet

puzzle_2_cf_results_1 <- 1-(23^2 + 25^2)/30^2*0.5

puzzle_2_cf_results_2 <- 1-(25^2 + 25^2)/30^2*0.5

puzzle_2_cf_results_3 <- 1-(23^2 + 23^2)/30^2*0.5

puzzle_2_cf_results <- c(puzzle_2_cf_results_1, puzzle_2_cf_results_2,

puzzle_2_cf_results_3)

One can also solve this via simulation

meeting_prob <- function(wt_lil,wt_bill){

mean(replicate(100000,{

times <- runif(2,0,30)

ifelse(times[1]>times[2], times[1]-times[2] <=wt_bill , times[2]-times[1] <=wt_lil)

}))

}

puzzle_2_sim_results <- c(meeting_prob(5,7),meeting_prob(5,5),meeting_prob(7,7))

puzzle_2_results <- data.frame(puzzle_2_cf_results , puzzle_2_sim_results)

colnames(puzzle_2_results) <- c("closed form", "simulation")

rownames(puzzle_2_results) <- c("(5,7)","(5,5)","(7,7)")

closed form simulation
(5,7) 0.35889 0.35976
(5,5) 0.30556 0.30800
(7,7) 0.41222 0.41185

Learning

The author’s approach is similar to mine.

5

Digital Dice

3 A Parallel Parking Question

My attempt

mutual_pairs <- function(n){

spots <- sort(runif(n))

nn <- c(4,rep(0,(n-2)),2)

nn[2:(n-1)] <- ifelse((spots[2:(n-1)]-spots[1:(n-2)]) >

spots[3:n] - (spots[2:(n-1)]), 4, 2)

sum(nn[1:(n-1)]%/%nn[2:n]==2)*2/n

}

cars <- c(4:12, 20,30)

prob <- c(1,2/3,sapply(cars,function(z)mean(replicate(1000,mutual_pairs(z)))))

puzzle_3_results <- data.frame("probability"= prob)

rownames(puzzle_3_results) <- c(2:12,20,30)

probability
2 1.00000
3 0.66667
4 0.66650
5 0.65800
6 0.67167
7 0.67486
8 0.65550
9 0.66867

10 0.66940
11 0.66145
12 0.66600
20 0.66250
30 0.66433

The simulation results makes one guess that the probability is 2/3 for every n > 2. Indeed it is surprising that

whatever be the value of n > 2, the probability of finding a mutual nearest neighbor is 2/3.

Learning

The author is equally surprised with the result and mentions a few references that give closed form solutions

to the problem as:

probability (1d) = 2/3

probability (2d) = 6 ∗ π/(8π + 3
√

(3)) = 0.621505

probability (3d) = 16/27 = 0.592592

6

Digital Dice

4 A Curious Coin-Flipping Game

My attempt

time_to_ruin <- function(l, m, n , p){

counter <- c(l, m, n)

tosses <- 0

while(!any(counter==0)){

trial <- rbinom(3,1,p)

tosses <- tosses + 1

if(sum(trial) == 2) {

idx_1 <- which(trial==1)

idx_0 <- which(trial==0)

counter[idx_1] <- counter[idx_1] - 1

counter[idx_0] <- counter[idx_0] + 2

} else if (sum(trial)==1){

idx_1 <- which(trial==1)

idx_0 <- which(trial==0)

counter[idx_1] <- counter[idx_1] + 2

counter[idx_0] <- counter[idx_0] - 1

}

}

tosses

}

puzzle_4_results <- data.frame(l = rep(c(1,1,2,3,4), times=2),

m = rep(c(1,2, 3, 3, 7), times=2),

n= rep(c(1,3, 4, 3, 9), times=2),

p=c(rep(0.5,5), rep(0.4,5)))

puzzle_4_results$average <- apply(puzzle_4_results, 1, function(z) {

mean(replicate(10000,time_to_ruin(z[1], z[2], z[3], z[4])))

})

l m n p average
1 1 1 0.50 1.3222
1 2 3 0.50 1.9910
2 3 4 0.50 4.5935
3 3 3 0.50 5.1505
4 7 9 0.50 18.6390
1 1 1 0.40 1.3840
1 2 3 0.40 2.0859
2 3 4 0.40 4.7464
3 3 3 0.40 5.3658
4 7 9 0.40 19.7320

7

Digital Dice

Learning

The author provides a closed form solution for a fair coin as

µ =
4lmn

3(l +m+ n− 2)

Hence analytical answers for the puzzle are

l m n p average theoretical
1 1 1 0.50 1.3222 1.3333
1 2 3 0.50 1.9910 2.0000
2 3 4 0.50 4.5935 4.5714
3 3 3 0.50 5.1505 5.1429
4 7 9 0.50 18.6390 18.6667
1 1 1 0.40 1.3840
1 2 3 0.40 2.0859
2 3 4 0.40 4.7464
3 3 3 0.40 5.3658
4 7 9 0.40 19.7320

The author derives the solution for l = 1,m = 1, n = 1 and for any p, the expected tosses for ruin as

µ =
1

3p(1− p)

Hence out of all possible values for p, for p = 1/2, the game comes to end quicky. For p → 0 or p → ∞, it

becomes more and more likely that all three coins will show the same face on a toss. Since such an outcome

results in no coins changing hands, this raises the number of tosses we expect to see before one of the men is

ruined.

8

Digital Dice

5 The Gamow-Stern Elevator Puzzle

My attempt

0 represent elevator going up, 1 represents elevator going down

waiting_time <- function(direction, x) {

if(direction == 0 & x > 1) return(c(1, 11 - x))

if(direction == 1 & x > 1) return(c(1, x - 1))

if(direction == 0 & x < 1) return(c(0, 1 - x))

if(direction == 1 & x < 1) return(c(0, x + 1))

}

n <- 100000

realizations <- data.frame(dx= sample(c(0, 1), n , TRUE),

dy= sample(c(0, 1), n , TRUE),

x=runif(n, 0, 6), y = runif(n, 0, 6))

puzzle_5_sim_1 <- apply(realizations,1, function(z){

elevator_1 <- waiting_time(z[1],z[3])

elevator_2 <- waiting_time(z[2],z[4])

ifelse(elevator_1[2] < elevator_2[2] ,elevator_1[1], elevator_2[1])

})

puzzle_5_results_1 <- data.frame(simulated = mean(puzzle_5_sim_1) , actual = 13/18)

simulated actual
0.7223 0.7222

Three elevator building

n <- 100000

realizations <- data.frame(dx= sample(c(0, 1), n , TRUE),

dy= sample(c(0, 1), n , TRUE), dz= sample(c(0, 1), n , TRUE),

x=runif(n, 0, 6), y = runif(n, 0, 6), z = runif(n, 0, 6))

puzzle_5_sim_2 <- apply(realizations,1, function(z){

elevator_1 <- waiting_time(z[1],z[4])

elevator_2 <- waiting_time(z[2],z[5])

elevator_3 <- waiting_time(z[3],z[6])

times <- c(elevator_1[2], elevator_2[2], elevator_3[2])

direction <- c(elevator_1[1], elevator_2[1], elevator_3[1])

direction[which.min(times)]

})

puzzle_5_sim_2_res <- mean(puzzle_5_sim_2)

print(puzzle_5_sim_2_res)

[1] 0.6463

Hence the probability that first arriving elevator at Gamow’s floow is going down is 0.6464.

9

Digital Dice

Learning

The author provides code for a general case of M elevators. Looking at the solution, I have rewritten my

initial somewhat clumsy code and generalized it for any M elevators

get_puzzle_15_prob <- function(M){

n <- 10000

directions <- matrix(sample(c(0, 1), n , TRUE) , nrow = M, ncol = n)

times <- matrix(runif(n*M, 0, 6) , nrow = M, ncol = n)

p15_sim_results <- sapply(1:n,function(case){

res <- apply(cbind(directions[,case],times[,case]), 1,

function(case) waiting_time(case[1],case[2]))

res[1,which.min(res[2,])]

}

)

mean(p15_sim_results)

}

Ms <- 2:10

puzzle_15_res <- sapply(Ms,get_puzzle_15_prob)

puzzle_15_gen_res <- data.frame(M = Ms, probability= puzzle_15_res)

of elevators

pr
ob

ab
ili

ty

0.50

0.55

0.60

0.65

0.70

2 4 6 8 10

M probability
2 0.7241
3 0.6427
4 0.5974
5 0.5590
6 0.5521
7 0.5294
8 0.5121
9 0.5079

10 0.5090

10

Digital Dice

6 Steve’s Elevator Problem

My attempt

For k = 2 riders, the closed form solution can be easily written as

µ =
9

n2
+

14(n− 3)

n2
+

3(n− 3)(n− 4)

n2

p5_closed_form <- function(n){9/n^2 + 14*(n-3)/n^2 + 3*(n-3)*(n-4)/n^2}

print(p5_closed_form(11))

[1] 2.388

m <- 1:15

n <- 11

steve <- n-2

cases <- data.frame(n = n, m = m, stevesfloor = steve)

average <- apply(cases, 1, function(case){

mean(replicate(10000,sum(unique(sample(1:case[1], case[2]-1, T)) < case[3])+1))

})

puzzle_6_results <- cbind(cases, average)

n m stevesfloor average
11 1 9 1.0000
11 2 9 1.7246
11 3 9 2.3867
11 4 9 3.0010
11 5 9 3.5381
11 6 9 4.0318
11 7 9 4.4813
11 8 9 4.8965
11 9 9 5.2756
11 10 9 5.6268
11 11 9 5.9019
11 12 9 6.1864
11 13 9 6.4577
11 14 9 6.6837
11 15 9 6.8814

Learning

The author gives a reference to the closed form solution to the above puzzle

µ = 9− 8

(
10

11

)k

11

Digital Dice

7 The Pipe Smoker’s Discovery

My attempt

puzzle_7 <- function(n){

results <- replicate(1000,{

matches <- c(n,n)

while(TRUE){

idx <- ifelse(runif(1)>0.5,1,2)

if(matches[idx]==0) break

matches[idx] <- matches[idx]-1

}

2*n - sum(matches)

})

mean(results)

}

n_40 <- puzzle_7(40)

n_150 <- puzzle_7(150)

cat(n_40,n_150, "\n")

73.56 287.2

� The average number of matches that can be removed until one booklet is completely empty is 73.557

� The amount of floss in the other box is 12.752

Learning

The author introduces a variant of the puzzle - Banach Matchbox problem

A mathematician who loved cigarettes (Banach smoked up to five packs a day and his early death

at age 53 was, not surprisingly, of lung cancer) has two matchboxes, one in his left pocket and

one in his right pocket, with each box initially containing N matches. The smoker selects a box

at random each time he lights a new cigarette, and the problem is to calculate the probability

that, when the smoker first discovers that the box he has just selected is empty, there are exactly

r matches in the other box, where clearly r = 0, 1, 2, . . . , N

When I read the above variant, I realized that my code was actually not solving the original problem but

solving Banach Matchbox problem. My code stops only when the person picks up a matchbox and discovers

it as empty. The original puzzle is different. The count should stop when the matchbox becomes empty and

not when the guy who picks it up realizes that it is empty.

12

Digital Dice

Hence the actual code for the puzzle should be

puzzle_7 <- function(n){

results <- replicate(1000,{

matches <- c(n,n)

while(TRUE){

if(any(matches==0)) break

idx <- ifelse(runif(1)>0.5,1,2)

matches[idx] <- matches[idx]-1

}

2*n - sum(matches)

})

mean(results)

}

n_40 <- puzzle_7(40)

n_150 <- puzzle_7(150)

cat(n_40,n_150, "\n")

73.23 286.2

� The average number of matches that can be removed until one booklet is completely empty is 73.228

� The amount of floss in the other box is 13.796

The author shows a histogram for the simulations and points at the peculiarities of the graph

average removed

0

5

10

15

20 40 60

The probabilities associated with average being less than 50 is 0 in the simulations as they are all rare events.

13

Digital Dice

Closed form solution :

The author derives the closed form solution for the problem and shows the paradoxical nature of the prob-

lem.The probability that either of the boxes end up with k ft of floss is

P (k) = (1/2)2N−k−1 (2N − k − 1)!

(N − 1)!(N −K)!

and hence the average floss in the non-empty box is

k =

N∑
k=1

kP (k) =

N∑
k=1

k(1/2)2N−k−1 (2N − k − 1)!

(N − 1)!(N −K)!

One can directly use the above formula to solve the puzzle

k <- 1:40

N <- 40

n_40_closed <- sum(k*(1/2)^(2*N-k-1) *(choose(2*N-k-1,N-k)))

k <- 1:150

N <- 150

n_150_closed <- sum(k*(1/2)^(2*N-k-1) *(choose(2*N-k-1,N-k)))

� The average number of matches that can be removed until one booklet is completely empty is 7.1142

� The amount of floss in the other box is 286.1917

One can even approximate the closed form solution as k = C
√
N . This can be seen by drawing a log-log plot

Ns <- 1:500

p7_closedf_results <- sapply(Ns, function(N){

k <- 1:N

sum(k*(1/2)^(2*N-k-1) *(choose(2*N-k-1,N-k)))

}

)

coefs <- coef(lm(log(p7_closedf_results)~log(Ns)))

C <- coefs[1]

coefs[2]

log(Ns)

0.5042

14

Digital Dice

log N

lo
g

av
er

ag
e

k

10^0.0

10^0.5

10^1.0

10^0.0 10^0.5 10^1.0 10^1.5 10^2.0 10^2.5

Hence an approximate solution is k = C
√
N where C is 0.0971.

The author also explains the paradox behind the puzzle, i.e. for any value of N , the most probable value

of k is always less than the average value of k. The logic follows from the observation that for any N ,

P (1) = P (2) < P (2) < P (4) Hence the dental floss problem is called a paradox.

15

Digital Dice

8 A Toilet Paper Dilemma

My attempt

My attempt at solving this problem was disastrous. I ended up unnecessarily complicating the code by having

a recursive function. The following is the code that I wrote which takes eternity for bigger m and n values

average_roll_left <- function(m,n, p){

results <- matrix(, ncol = 3)[-1,]

results <- rbind(results, c(1,1,1))

memoed <- function(x,y) {

sum(results[,1]==x & results[,2]==y) > 0

}

M <- function(m, n , p){

if(memoed(m, n) ==TRUE) {

cond <- results[,1]==m & results[,2]==n

return(results[cond,3])

}

if(m == 0) {

if(memoed(m,n)==FALSE) results <<- rbind(results, c(0,n,n))

return(n)

}

if(n == 0) {

if(memoed(m,n)==FALSE) results <<- rbind(results, c(m,0,m))

return(m)

}

if(n > 0 & m == n) {

temp <- M(n, n-1, p)

if(memoed(m,n)==FALSE) results <<- rbind(results, c(m,n,temp))

return(temp)

}

if(m > n & n > 0) {

temp <- p*M(m - 1, n, p) + (1-p)*M(m, n - 1, p)

if(memoed(m,n)==FALSE) results <<- rbind(results, c(m,n,temp))

return(temp)

}

}

M(m,m,p)

}

average_roll_left(10,10,0.5)

[1] 3.524

16

Digital Dice

Learning

The author’s code is simple and elegant.

M <- matrix(0,200,200)

prob <- 0

k <- 1

puzzle_8_results <- data.frame(prob = rep(0,100), value = rep(0,100))

for(k in 1:100){

prob <- prob + 1

p <- prob/100

M[1, 1] <- 1

for(r in 2:200){

M[1, r] <- p*M[1, r-1] + (1 - p)*r

}

M[2, 2] <- M[1,2]

i <- 2

for(i in 2:199){

for(j in (i+1):200){

M[i, j] <- p*M[i, j - 1] +(1 - p)*M[i - 1, j]

}

M[i+1, i+1] <- M[i, i+1]

}

puzzle_8_results[k,1] <- p

puzzle_8_results[k,2] <- M[200,200]

}

probability

A
ve

ra
ge

0

50

100

150

200

0.0 0.2 0.4 0.6 0.8 1.0

17

Digital Dice

9 The Forgetful Burglar problem

My attempt

puzzle_9_trial <- function(){

loc <- 0

visited <- c(loc)

for(k in 1:7){

jump <- sample(c(-1,1),1)*sample(c(1,2),1)

if((loc + jump) %in% visited){

return(k)

}else{

loc <- loc+jump

visited <- c(visited, loc)

}

}

return(0)

}

puzzle_9_results_sim <- table(replicate(100000,puzzle_9_trial()))

puzzle_9_results_sim <- as.data.frame(cbind(puzzle_9_results_sim)/100000)[-1,,drop=FALSE]

colnames(puzzle_9_results_sim) <- "probability"

The following gives the probability of revisiting the same location after k = 2 : 7 steps. For k = 1, it is obvious

that the probability is 0.

probability
2 0.2524
3 0.2788
4 0.1926
5 0.1177
6 0.0693
7 0.0396

Learning

The author suggests that the generalized solution to this puzzle is still an open problem. However for the

specific k=1 : 7, I guess one can write a difference equation and solve the probabilities recursively. The math

has been worked out in the paper titled, “The case of the forgetful burglar”, authored by Caxton Foster and

Anatol Rapoport. The paper derives the probabilities for k = 1 : 7

18

http://www.jstor.org/stable/2308877

Digital Dice

10 The Umbrella Quandary

My attempt

case 1 : x = 1, y = 1

For the simple case of x = 1, y = 1, one can list down the state space. The following are the six transient

states and one absorbing state

� Transient states A, B, C, D, E, F can be denoted as

(1, 1,Home), (2, 0,Home), (0, 2,Home), (1, 1,Office), (2, 0,Office), (0, 2,Office)

where the triple has the coordinates,(# of umbrellas at home ,# of umbrellas at office,current location).

� The absorbing state is the state when the man gets drenched. It is denoted by W

The transition matrix for the above states are

transition_matrix <- rbind(

c(rep(0,3),0.5,0,0.5,0),c(rep(0,3),0.5,0.5,0,0),c(rep(0,3),0,0,0.5,0.5),

c(0.5,0.5,0,rep(0,3),0),c(0,0.5,0,rep(0,3),0.5),c(0.5,0,0.5,rep(0,3),0),

c(rep(0,6),1))

colnames(transition_matrix) <- c(LETTERS[1:6],"W")

rownames(transition_matrix) <- c(LETTERS[1:6],"W")

A B C D E F W
A 0.0 0.0 0.0 0.5 0.0 0.5 0.0
B 0.0 0.0 0.0 0.5 0.5 0.0 0.0
C 0.0 0.0 0.0 0.0 0.0 0.5 0.5
D 0.5 0.5 0.0 0.0 0.0 0.0 0.0
E 0.0 0.5 0.0 0.0 0.0 0.0 0.5
F 0.5 0.0 0.5 0.0 0.0 0.0 0.0

W 0.0 0.0 0.0 0.0 0.0 0.0 1.0

For the above matrix, consider the submatrix Q = [A : F,A : F], then the time to absorption from various

starting states can be computed by the analytical formula (I −Q)−1 · I6

average_steps <- (solve(diag(6)-transition_matrix[1:6,1:6])%*%rep(1,6))[1,1]-1

puzzle_10_closedform <- average_steps

cat("On an average, the man will remain dry for ",average_steps," walks")

On an average, the man will remain dry for 11 walks

19

Digital Dice

case 2 : x = 2, y = 2

For this case, formulating the transition matrix is tedious. Hence resorted to simulation.

time_to_drench <- function(state,p){

rep_p10 <- replicate(1000,{

times <- 0

while(TRUE){

outcome <- ifelse(runif(1)>p, 1, 0)

if(state[3]==1){

state <- state + c(-outcome , +outcome , -1)

}else{

state <- state + c(outcome ,-outcome , 1)

}

if(state[1] < 0 | state[2] < 0) break

times <- times + 1

}

times

}

)

mean(rep_p10)

}

puzzle_10_sim <- time_to_drench(c(1,1,1),0.5)

puzzle_10_results <- data.frame(x = 1,y=1,

puzzle_10_closedform,

puzzle_10_sim

)

colnames(puzzle_10_results) <- c("x","y", "closed form","simulation")

x y closed form simulation
1 1 11 11

Learning

Nahin’s code is a slightly longer, understandably, as the intention is to provide the reader with absolute clarity

what the code does. The puzzle asks the reader to vary the probability of rain and compute the expected

number of walks before soaking. For extreme situations p = 0(it never rains) and p = 1(it always rains),

the man will never have a problem as he will never carry the umbrella or always carry the umbrella. Only

when the probability is between 0 and 1, does the puzzle become analytically challengin. The following code

computes the average steps for the two cases:

pval <- seq(0.01,0.99, by=0.05)

case1 <- sapply(pval, function(z)time_to_drench(c(1,1,1),z))

case2 <- sapply(pval, function(z)time_to_drench(c(2,2,1),z))

20

Digital Dice

(x=1,y=1)

probability of rain

A
ve

ra
ge

 n
um

be
r

of
 w

al
ks

 b
ef

or
e

fir
st

 s
oa

ki
ng

50

100

150

200

0.0 0.2 0.4 0.6 0.8 1.0

(x=2,y=2)

probability of rain

A
ve

ra
ge

 n
um

be
r

of
 w

al
ks

 b
ef

or
e

fir
st

 s
oa

ki
ng

100

200

300

400

500

600

0.0 0.2 0.4 0.6 0.8 1.0

21

Digital Dice

11 The case of missing senator

My attempt

The puzzle boils down to figuring out the ways in which group-1(let’s call it the minority group) ends up in

over turning the proposal. Let x be the senators absent in group-1 and let y be the senators absent in group-2.

Then for group-1 to win, the following must be satisfied

(49− x)− (51− y) ≥ 1⇒ y − x ≥ 3

Since x+ y = M , where M is the total number of absentees, the above inequality becomes

y ≥ M + 3

2

Thus the constraint on y is d(M + 3)/2)e < y ≤M , M ≥ 3 Hence the solution boils down to assigning various

probabilities depending on what value y takes.

puzzle_11_get_probability <- function(M){

y <- ceiling((M+3)/2):M

sum((choose(51,y)*choose(49,(M-y)))/choose(100,M))

}

puzzle_11_closedform <- sapply(c(3,4,5),puzzle_11_get_probability)

Learning

After obtaining the closed form solution, I was not motivated to perform simulation for this puzzle. The

author simulates the outcomes and estimates the probabilities. I rewrote the code in R

x <- rep(1,100)

puzzle_11_est_probability <- function(M,N){

mean(replicate(N, {

x[sample(1:100, M)] <- 0

ifelse(sum(x[1:49]) - sum(x[50:100]) >= 1, 1, 0)

}))

}

puzzle_11_sim <- sapply(c(3,4,5),puzzle_11_est_probability, N=100000)

puzzle_11_results <- data.frame(M = 3:5,puzzle_11_closedform,puzzle_11_sim)

colnames(puzzle_11_results) <- c("M","closed form", "simulation")

M closed form simulation
3 0.12879 0.12969
4 0.06373 0.06323
5 0.19385 0.19480

22

Digital Dice

12 How many runners in a marathon ?

My attempt

props <- c(2, 5, 10, 20) / 100

M <- 10000

trial <- function(p){

sim <- replicate(M, {

N <- runif(1, 100, 1000)

n <- floor(p*N)

N_est <- max(sample(1:N,n))*(n+1)/n - 1

(100*(N_est/N - 1))

})

c(mean(sim),sd(sim))

}

puzzle_12_results <- data.frame(props, t(sapply(props, trial)))

colnames(puzzle_12_results) <- c("sample size % ","avg of error %","sd of error%")

sample size % avg of error % sd of error%
0.02 -0.01 14.01
0.05 -0.12 6.00
0.10 -0.10 2.95
0.20 -0.12 1.39

23

Digital Dice

Learning

The author illustrates the histograms of various trials and shows that standard deviation goes down as the

sample size increases

props <- c(2, 5, 10, 20) / 100

M <- 10000

trial <- function(p){

sim <- replicate(M, {

N <- runif(1, 100, 1000)

n <- floor(p*N)

N_est <- max(sample(1:N,n))*(n+1)/n - 1

(100*(N_est/N - 1))

})

sim

}

puzzle_12_sim <- data.frame(val = c(sapply(props, trial)),

rep(paste0("sample size = ",props*100, "%"),each = 10000))

colnames(puzzle_12_sim) <- c("pct_error","sample_proportion")

%
 e

rr
or

0

10

20

30

40

50

−100 −50 0 50

sample size = 10% sample size = 2%

sample size = 20%

−100 −50 0 50

0

10

20

30

40

50

sample size = 5%

24

Digital Dice

13 A Police Patrol Problem

My attempt

For me, this puzzle has been the most challenging puzzle of the entire lot. Firstly, the way you simulate

the paths is not straightforward. One needs to think through an efficient way to simulate and store it in a

datastructure

Capture all scenarios in a data frame for easy lookup

scenarios <- matrix(,1,4)[-1,]

for(patrol in 1:2){

for(accident in 1:2){

for(direction in 0:1){

for(divide in 0:1){

scenarios <- rbind(scenarios, c(patrol, accident, direction, divide))

}

}

}

}

colnames(scenarios) <- c("patrol","accident", "direction", "divide")

Function to compute the minimum distance for a specific realization

distance_to_accident <- function(patrol_lane, patrol_loc, direction, accident_lane,

accident_loc, divide){

m <- length(patrol_lane)

result <- numeric(m)

for(i in 1:m){

x <- accident_loc

y <- patrol_loc[i]

situation <- which(scenarios[,1] == patrol_lane[i] &

scenarios[,2] == accident_lane &

scenarios[,3] == direction[i] &

scenarios[,4] == divide)

result[i] <- switch(situation,

y-x, 2+x-y, x-y, x-y, y-x, 2-x-y,

x-y, 2-x-y, x-y, x+y, y-x, x+y,

x-y , 2-x+y, y-x, y-x)

}

return(min(result))

}

25

Digital Dice

Function that generates samples for various situations

samples <- function(m, n,fixed=FALSE){

realizations <- cbind(matrix(sample(c(1, 2),(n + 1) * m, T),

nrow = m, ncol = n + 1),

matrix(runif((n + 1) * m),nrow = m, ncol = n + 1),

matrix(sample(c(0, 1),m, T), nrow = m, ncol = 1))

colnames(realizations) <- c(paste0("patrol_lane", 1:n),

"accident_lane", paste0("patrol_loc", 1:n),

"accident_loc", "divide")

if(fixed == TRUE) realizations[,"patrol_loc1"] <- 0.5

realizations <- as.data.frame(realizations)

directions <- matrix(0, nrow = m, ncol = n)

colnames(directions) <- paste0("dir",1:n)

for(i in 1:n){

cond <- realizations[,i]==1 & realizations$accident_lane ==1

directions[cond,i] <- ifelse(realizations[cond,]$accident_loc >

realizations[cond,(n+1+i)], 1, 0)

cond <- realizations[,i]==2 & realizations$accident_lane ==2

directions[cond,i] <- ifelse(realizations[cond,]$accident_loc >

realizations[cond,(n+1+i)], 0, 1)

cond <- realizations[,i]==1 & realizations$accident_lane ==2

directions[cond,i] <- ifelse(realizations[cond,]$accident_loc >

realizations[cond,(n+1+i)], 1, 0)

cond <- realizations[,i]==2 & realizations$accident_lane ==1

directions[cond,i] <- ifelse(realizations[cond,]$accident_loc >

realizations[cond,(n+1+i)], 0, 1)

}

cbind(realizations[,c(1:n,(n+2):(2*n+1))],directions, realizations[,c(n+1,2*n+2,2*n+3)])

}

Function to compare the various configurations

get_average_response <- function(n, fixed=FALSE){

test <- samples(1000,n, fixed)

test$dist <- apply(test, 1, function(z)

distance_to_accident(z[1:n], z[(n+1):(2*n)],

z[(2*n+1) : (3*n)],z[3*n+1],

z[3*n+2],z[3*n+3]))

with(test, tapply(dist,divide,mean))

}

26

Digital Dice

Comparing various configurations

puzzle_13_results <- c(get_average_response(1,TRUE),get_average_response(1),

get_average_response(2))

puzzle_13_results <- data.frame(scenarios = c("a-1","a-2","b-1","b-2","c-1","c-2"),

average = puzzle_13_results)

scenarios average
a-1 0.2435
a-2 1.0083
b-1 0.3275
b-2 1.0339
c-1 0.2036
c-2 0.6540

From the above table, one can see that scenario c-1 is the best performing one

Learning

The author gives a detailed flowchart to write the code necessary to solve the problem. He also provides closed

form solution to one of the cases.

grassy median =
1

2n+ 1

concrete median =
2

n+ 1

Hence as n→∞, the ratio of response time for concrete median to grassy median should tend to 4. One can

verify this using simulation

puzzle_13_ratio <- t(sapply(c(1,2,3,4,9), get_average_response))

puzzle_13_ration_res <- data.frame(cars = c(1,2,3,4,9),

ratio = puzzle_13_ratio[,2]/puzzle_13_ratio[,1])

cars ratio
1 2.9268
2 3.0440
3 3.1061
4 3.2713
9 3.6636

27

Digital Dice

14 Parrondo’s Paradox

My attempt

Simulate Game A

epsilon <- 1e-3

p1 <- 1/10-epsilon

p2 <- 3/4-epsilon

p3 <- 1/2 -epsilon

N <- 101

M <- 10000

results <- matrix(0, nrow = M, ncol = N)

for(j in seq_len(M)){

score <- numeric(N)

i <- 1

score[i] <- 0

for(i in seq_len(N)[-1]){

outcome <- ifelse(runif(1)<p3, 1, -1)

score[i] <- score[i-1] + outcome

}

results[j,] <- score

}

results_game1 <- colMeans(results)

Simulate Game B

results <- matrix(0, nrow = M, ncol = N)

for(j in seq_len(M)){

score <- numeric(N)

i <- 1

score[i] <- 0

for(i in seq_len(N)[-1]){

if(score[i-1]%%3==0){

outcome <- ifelse(runif(1)<p1, 1, -1)

}else{

outcome <- ifelse(runif(1)<p2, 1, -1)

}

score[i] <- score[i-1] + outcome

}

results[j,] <- score

}

results_game2 <- colMeans(results)

28

Digital Dice

Simulate flipping between Game A and Game B

epsilon <- 1e-3

p1 <- 1/10-epsilon

p2 <- 3/4-epsilon

p3 <- 1/2 -epsilon

results <- matrix(0, nrow = M, ncol = N)

for(j in seq_len(M)){

score <- numeric(N)

i <- 1

score[i] <- 0

for(i in seq_len(N)[-1]){

if(runif(1) > 0.5){

if(score[i-1]%%3==0){

outcome <- ifelse(runif(1)<p1, 1, -1)

}else{

outcome <- ifelse(runif(1)<p2, 1, -1)

}

}else{

outcome <- ifelse(runif(1)<p3, 1, -1)

}

score[i] <- score[i-1] + outcome

}

results[j,] <- score

}

results_game12 <- colMeans(results)

29

Digital Dice

of flips

pa
yo

ut

0 20 40 60 80 100

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0 Game Type 1
Game Type 2
random flip between the two games

Learning

The logic of the code was very much identical to what I have coded. The notes suggest some interesting papers

that explore the math behind the paradox.

� Brownian motion and gambling: from ratchets to paradoxical games

� Simple games to illustrate Parrondo’s paradox

30

http://arxiv.org/abs/1410.0485
http://augean.eleceng.adelaide.edu.au/Groups/parrondo/publications/AJP_martin2004.pdf

Digital Dice

15 How Long Is the Wait to Get the Potato Salad ?

My attempt

This is a classic M/M/1 problem from the queueing theory. The questions in this puzzle are

1. What is the average total time at the deli counter for the customers (total time is the sum of the waiting

time and the service time) ?

2. What is the maximum total time experienced by the unluckiest of the customers ?

3. What is the average length of the customer waiting queue?

4. What is the maximum length of the customer waiting queue?

5. What happens to the answers to the first four questions if a second, equally skilled deli clerk is hired?

6. What is the fraction of the work day that the clerks are idle ?

Queue <- setRefClass(Class = "Queue",

fields = list(

name = "character",

data = "list"

),

methods = list(

size = function() {

return(length(data))

},

push = function(item) {

data[[size()+1]] <<- item

},

pop = function() {

if (size() == 0) stop("queue is empty!")

value <- data[[1]]

data[[1]] <<- NULL

value

},

poll = function() {

if (size() == 0) return(NULL)

else pop()

},

peek = function(pos = c(1)) {

if (size() < max(pos)) return(NULL)

if (length(pos) == 1) return(data[[pos]])

else return(data[pos])

},

initialize=function(...) {

callSuper(...)

.self

}

))

31

Digital Dice

Simulate M/M/1

simulate_m_m_1 <- function(lambda, mu, duration){

t <- 0

wq <- Queue$new()

wq$name <- "deli queue"

servq <- Queue$new()

servq$name <- "servicing queue"

customer <- 0

max_queue_size <- 0

t1 <- rexp(1,rate=lambda)

customer <- customer + 1

servq$push(c(customer,t1,t1,0))

t <- t1

result <- data.frame(customer=numeric(), entry_time = numeric(),

serv_start = numeric() , serv_end = numeric())

while(t < duration) {

if(servq$size() >0) {

t1 <- rexp(1,rate = lambda + mu)

p <- runif(1)

if(p < lambda/(lambda + mu)){ #arrival

customer <- customer + 1

wq$push(c(customer, t + t1, 0 , 0))

} else {

serviced <- servq$pop()

serviced[4] <- t+t1

names(serviced) <- colnames(result)

result <- rbind(result,as.list(serviced))

if(wq$size() >0){

temp <- wq$pop()

temp[3] <- t+t1

servq$push(temp)

}

}

} else {

t1 <- rexp(1,rate=lambda)

customer <- customer + 1

servq$push(c(customer,t+t1,t+t1,0))

}

if(max_queue_size < wq$size()) max_queue_size <- wq$size()

t <- t + t1

}

avg_total_time <- mean(result$serv_end-result$entry_time)

max_time <- max(result$serv_end-result$entry_time)

32

Digital Dice

avg_queue_length <- sum(result$serv_start-result$entry_time)/36000

idle_time <- (1- sum(result$serv_end-result$serv_start)/36000)*100

c(avg_total_time,max_time,avg_queue_length, max_queue_size,idle_time)

}

Single Server λ = 30, µ = 40

duration <- 36000

lambda <- 30/3600

mu <- 40/3600

puzzle_15_results <- replicate(5,simulate_m_m_1(lambda,mu,duration))

puzzle_15_results_one_s <- matrix(round((t(puzzle_15_results)),2),nrow=5)

colnames(puzzle_15_results_one_s) <- c("Average total time(sec)",

"Max total time(sec)",

"Average Q length",

"Maximum Q length",

"Idle time(percent)")

rownames(puzzle_15_results_one_s) <-NULL

puzzle_15_xtable <- xtable(puzzle_15_results_one_s,digits=2)

align(puzzle_15_xtable) <- c('l|p{1in}|p{0.75in}|p{0.75in}|p{0.75in}|p{0.75in}')

Average total
time(sec)

Max total
time(sec)

Average Q
length

Maximum Q
length

Idle
time(percent)

1 226.44 776.65 1.14 8.00 31.18
2 275.90 1228.21 1.40 10.00 28.83
3 356.77 1254.41 2.26 10.00 19.22
4 291.77 1135.25 1.79 11.00 26.65
5 526.21 2005.42 3.95 20.00 19.96

33

Digital Dice

Computing the average value from 100 simulations to theoretical values

duration <- 36000

lambda <- 30/3600

mu <- 40/3600

puzzle_15_results <- replicate(100,simulate_m_m_1(lambda,mu,duration))

puzzle_15_results_one_s <- matrix(round(colMeans(t(puzzle_15_results)),2),nrow=5)

rownames(puzzle_15_results_one_s) <- c("Average total time(sec)",

"Max total time(sec)",

"Average Q length",

"Maximum Q length",

"Idle time(percent)")

rho <- lambda/mu

L <- rho/(1-rho)

L_q <- rho^2/(1-rho)

W <- L / lambda

W_q <- L_q / lambda

p_0 <- (1-rho)*100

puzzle_15_results_one_s <- cbind(puzzle_15_results_one_s,c(W,NA,L_q,NA,p_0))

colnames(puzzle_15_results_one_s) <- c("estimated average","closed form")

estimated average closed form
Average total time(sec) 340.40 360.00

Max total time(sec) 1316.97
Average Q length 2.08 2.25

Maximum Q length 12.43
Idle time(percent) 25.96 25.00

34

Digital Dice

Single Server λ = 30, µ = 25

duration <- 36000

lambda <- 30/3600

mu <- 25/3600

puzzle_15_results <- replicate(5,simulate_m_m_1(lambda,mu,duration))

puzzle_15_results_one_s <- matrix(round((t(puzzle_15_results)),2),nrow=5)

colnames(puzzle_15_results_one_s) <- c("Average total time(sec)",

"Max Total time(sec)",

"Average Queue Length",

"Maximum Queue Length",

"Idle time(percent)")

rownames(puzzle_15_results_one_s) <-NULL

puzzle_15_xtable <- xtable(puzzle_15_results_one_s,digits=2)

align(puzzle_15_xtable) <- c('l|p{1in}|p{0.75in}|p{0.75in}|p{0.75in}|p{0.75in}')

Average total
time(sec)

Max Total
time(sec)

Average
Queue
Length

Maximum
Queue
Length

Idle
time(percent)

1 2212.74 5698.16 14.12 42.00 6.29
2 4443.20 6749.52 29.01 59.00 2.17
3 1624.39 3488.01 10.75 28.00 1.83
4 2929.41 5645.22 20.50 41.00 1.41
5 2409.19 6204.36 16.61 60.00 0.59

35

Digital Dice

Simulate M/M/2

simulate_m_m_2 <- function(lambda, mu, duration){

t <- 0

wq <- Queue$new()

wq$name <- "deli queue"

servq1 <- Queue$new()

servq1$name <- "servicing queue1"

servq2 <- Queue$new()

servq2$name <- "servicing queue2"

customer <- 0

max_queue_size <- 0

t1 <- rexp(1,rate=lambda)

customer <- customer + 1

servq1$push(c(customer,t1,t1,0))

t <- t1

result <- data.frame(customer=numeric(), entry_time = numeric(),

serv_start = numeric() , serv_end = numeric(),serv_no=numeric())

while(t < duration) {

if(servq1$size() > 0 | servq2$size() > 0) {

t1 <- rexp(1, rate = lambda + 2*mu)

p <- runif(1)

if(p < lambda/(lambda + 2*mu)){ #arrival

customer <- customer + 1

if(servq1$size()==0){

servq1$push(c(customer, t + t1, t+t1 , 0))

}else{

if(servq2$size()==0){

servq2$push(c(customer, t + t1, t+t1 , 0))

}else{

wq$push(c(customer, t + t1, 0 , 0))

}

}

} else {

if(servq1$size()>0){

serviced <- servq1$pop()

serviced[4] <- t+t1

serviced[5] <- 1

names(serviced) <- colnames(result)

result <- rbind(result,as.list(serviced))

}else{

if(servq2$size()>0){

36

Digital Dice

serviced <- servq2$pop()

serviced[4] <- t+t1

serviced[5] <- 2

names(serviced) <- colnames(result)

result <- rbind(result,as.list(serviced))

}

}

if(wq$size() >0){

temp <- wq$pop()

temp[3] <- t+t1

if(servq1$size() == 0){servq1$push(temp)}

else{servq2$push(temp)}

}

}

} else {

t1 <- rexp(1,rate=lambda)

customer <- customer + 1

servq1$push(c(customer,t+t1,t+t1,0))

}

if(max_queue_size < wq$size()) max_queue_size <- wq$size()

t <- t + t1

}

avg_total_time <- mean(result$serv_end-result$entry_time)

max_time <- max(result$serv_end-result$entry_time)

avg_queue_length <- sum(result$serv_start-result$entry_time)/36000

temp <- subset(result, serv_no==1)

idle_time_1 <- (1- sum(temp$serv_end-temp$serv_start)/36000)*100

temp <- subset(result, serv_no==2)

idle_time_2 <- (1- sum(temp$serv_end-temp$serv_start)/36000)*100

c(avg_total_time,max_time,avg_queue_length, max_queue_size,idle_time_1,idle_time_2)

}

@ Two Servers λ = 30, µ = 40

duration <- 36000

lambda <- 30/3600

mu <- 40/3600

puzzle_15_results <- replicate(5,simulate_m_m_2(lambda,mu,duration))

puzzle_15_results_two_s <- matrix(round((t(puzzle_15_results)),2),nrow=5)

colnames(puzzle_15_results_two_s) <- c("Average total time(sec)",

"Max Total time(sec)",

"Average Queue Length",

"Maximum Queue Length",

"Server 1 Idle time(percent)",

37

Digital Dice

"Server 2 Idle time(percent)")

rownames(puzzle_15_results_two_s) <-NULL

puzzle_15_xtable <- xtable(puzzle_15_results_two_s,digits=2)

align(puzzle_15_xtable)<- c('l|p{1in}|p{0.75in}|p{0.75in}|p{0.75in}|p{0.75in}|p{0.75in}')

Average total
time(sec)

Max Total
time(sec)

Average
Queue
Length

Maximum
Queue
Length

Server 1 Idle
time(percent)

Server 2 Idle
time(percent)

1 62.87 640.61 0.05 4.00 72.72 81.64
2 68.53 709.27 0.04 3.00 71.18 81.97
3 70.86 876.73 0.09 5.00 71.33 81.06
4 72.85 653.43 0.09 4.00 68.53 78.34
5 71.01 1038.37 0.10 4.00 67.10 78.06

38

Digital Dice

Computing the average value from 100 simulations to theoretical values

duration <- 36000

lambda <- 30/3600

mu <- 40/3600

puzzle_15_results <- replicate(100,simulate_m_m_2(lambda,mu,duration))

puzzle_15_results_two_s <- matrix(round(colMeans(t(puzzle_15_results)),2),nrow=6)

rownames(puzzle_15_results_two_s) <- c("Average total time(sec)",

"Max Total time(sec)",

"Average Queue Length",

"Maximum Queue Length",

"Server 1 Idle time(percent)",

"Server 2 Idle time(percent)")

r <- lambda/mu

rho <- lambda/(2*mu)

p_0 <- (r^2/(2*(1-rho)) + 1 + r)^(-1)

L_q <- (r^2*rho/(2*(1-rho)^2))*p_0

W_q <- L_q / lambda

W <- 1/mu + (r^2/(2*2*mu*(1-rho)^2))*p_0

puzzle_15_results_two_s <- cbind(puzzle_15_results_two_s,c(W,NA,L_q,NA,NA,NA))

colnames(puzzle_15_results_two_s) <- c("estimated average","closed form")

estimated average closed form
Average total time(sec) 71.99 104.73

Max Total time(sec) 753.88
Average Queue Length 0.09 0.12

Maximum Queue Length 3.93
Server 1 Idle time(percent) 68.73
Server 2 Idle time(percent) 79.50

39

Digital Dice

Two Servers λ = 30, µ = 25

duration <- 36000

lambda <- 30/3600

mu <- 25/3600

puzzle_15_results <- replicate(5,simulate_m_m_2(lambda,mu,duration))

puzzle_15_results_two_s <- matrix(round((t(puzzle_15_results)),2),nrow=5)

colnames(puzzle_15_results_two_s) <- c("Average total time(sec)",

"Max Total time(sec)",

"Average Queue Length",

"Maximum Queue Length",

"Server 1 Idle time(percent)",

"Server 2 Idle time(percent)")

rownames(puzzle_15_results_two_s) <-NULL

puzzle_15_xtable <- xtable(puzzle_15_results_two_s,digits=2)

align(puzzle_15_xtable)<- c('l|p{1in}|p{0.75in}|p{0.75in}|p{0.75in}|p{0.75in}|p{0.75in}')

Average total
time(sec)

Max Total
time(sec)

Average
Queue
Length

Maximum
Queue
Length

Server 1 Idle
time(percent)

Server 2 Idle
time(percent)

1 140.66 1511.12 0.25 5.00 52.08 58.46
2 157.57 1752.96 0.40 8.00 54.60 60.60
3 184.04 2119.06 0.42 6.00 46.60 52.52
4 169.54 2955.12 0.55 11.00 49.76 58.88
5 134.17 1132.38 0.20 4.00 56.86 65.01

40

Digital Dice

Computing the average value from 100 simulations to theoretical values

duration <- 36000

lambda <- 30/3600

mu <- 25/3600

puzzle_15_results <- replicate(100,simulate_m_m_2(lambda,mu,duration))

puzzle_15_results_two_s <- matrix(round(colMeans(t(puzzle_15_results)),2),nrow=6)

rownames(puzzle_15_results_two_s) <- c("Average total time(sec)",

"Max Total time(sec)",

"Average Queue Length",

"Maximum Queue Length",

"Server 1 Idle time(percent)",

"Server 2 Idle time(percent)")

r <- lambda/mu

rho <- lambda/(2*mu)

p_0 <- (r^2/(2*(1-rho)) + 1 + r)^(-1)

L_q <- (r^2*rho/(2*(1-rho)^2))*p_0

W_q <- L_q / lambda

W <- 1/mu + (r^2/(2*2*mu*(1-rho)^2))*p_0

puzzle_15_results_two_s <- cbind(puzzle_15_results_two_s,c(W,NA,L_q,NA,NA,NA))

colnames(puzzle_15_results_two_s) <- c("estimated average","closed form")

estimated average closed form
Average total time(sec) 177.90 225.00

Max Total time(sec) 2358.53
Average Queue Length 0.54 0.67

Maximum Queue Length 7.41
Server 1 Idle time(percent) 48.69
Server 2 Idle time(percent) 55.97

41

Digital Dice

16 The Appeals Court Paradox

My attempt

probs <- c(0.95, 0.95, 0.9, 0.9, 0.8)

(1 - mean(replicate(1000000, sum(rbinom(5, 1, prob = probs)) >= 3))) * 100

[1] 0.7006

(1 - mean(replicate(1000000, sum(rbinom(5, 1, prob = probs)[c(1, 2, 3, 4, 1)]) >= 3))) * 100

[1] 1.218

Learning

The author computes the failure probability directly. Here is the R code for it:

probs <- c(0.95, 0.95, 0.9, 0.9, 0.8)

mean(replicate(1000000, sum(1- rbinom(5, 1, prob = probs)) > 2)) * 100

[1] 0.7123

mean(replicate(1000000, sum(1- rbinom(5, 1, prob = probs)[c(1, 2, 3, 4, 1)]) > 2)) * 100

[1] 1.193

It is truly paradoxical.

If the worst judge follows the lead of the best judge, then we have an increased (almost doubled)

probability that the court erors! What happens to the concept of setting a good example? Most

people are suprised by the result.

42

Digital Dice

17 Waiting for Buses

My attempt

bus_waiting_time <- function(n){

mean(replicate(10000,{

timings <- c(0,1)

if(n > 1){

for(bus in 2:n){

x <- runif(1)

timings <- c(timings,x)

}

}

timings <- timings[order(timings,decreasing = FALSE)]

arrival <- runif(1)

idx <- which(timings>=arrival)[1]

timings[idx]-arrival

}))

}

puzzle_17_results_sim <- sapply(1:10,bus_waiting_time)

puzzle_17_results_sim <- as.data.frame(puzzle_17_results_sim)

colnames(puzzle_17_results_sim) <- "waiting time"

The following gives the values of the waiting time for different number of buses :

waiting time
1 0.50
2 0.33
3 0.25
4 0.20
5 0.17
6 0.14
7 0.13
8 0.11
9 0.10

10 0.09

43

Digital Dice

of buses

W
ai

tin
g

tim
e

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10

One can guess that the relationship as

E(Wn) =
1

n+ 1

Learning

The author provides a closed form solution for the problem for n = 2. Let’s say that the bus arrives at x time,

the probability of the rider arriving before x is x and the probability of the rider arriving after x is 1−x. The

waiting time for the former case is x/2 and the later case is (1− x)/2

E[W |x] = x/2 · x+ (1− x)/2 · (1− x)

This implies

E[W] =

∫ 1

0

x/2 · x+ (1− x)/2 · (1− x)dx = 1/3

44

Digital Dice

18 Waiting for Stoplights

My attempt

In the first go, I had tried coming up with a simple solution based on combinatorics. I found it easier to

visualize the puzzle where I am standing at (0, 0) and the objective is to reach (m,m). I would not stop

anywhere until I hit x = m or y = m, after which I need to wait if there is an appropriate signal. If you

consider the (m − 1) × (m − 1) block and then compute the probabilities of hitting the x = (m − 1) or

y = (m− 1), then these probabilities can be used to compute the expected waiting times.

E(wait) = 2 ·

m−1∑
j=0

(
m− 1 + j

j

)
· (1/2)m−1 · (1/2)j · (1/2) · (m− i)/2



closed_form <- function(m){

idx <- 0:(m-1)

sum(choose(m - 1 + idx, idx) * (1/2)^(m-1)* 1/2^(idx) *((m):1)*1/2 * 1/2) *2

}

puzzle_18_closedform <- sapply(c(2,5,10,20,50,100), closed_form)

Monte carlo method: Another way to solve this problem is to simulate paths

get_to_destination <- function(m){

location <- c(0,0)

waiting <- 0

while(location[1]!=m & location[2]!=m){

direction <- ifelse(runif(1)>0.5,1,0)

if(direction==1) {

location <- location + c(1,0)

}else{

location <- location + c(0,1)

}

}

remaining <- ifelse(location[1]==m,m-location[2],m-location[1])

remaining/2

}

ms <- c(2,5,10,20,50,100)

n <- length(ms)

p18_results_1 <- numeric(n)

for(i in seq_len(n)){

p18_results_1[i] <- mean(replicate(5000,get_to_destination(ms[i])))

}

puzzle_18_results <- data.frame(puzzle_18_closedform, p18_results_1)

colnames(puzzle_18_results) <- c("closed form","simulation")

rownames(puzzle_18_results) <- ms

45

Digital Dice

closed form simulation
2 0.75000 0.74780
5 1.23047 1.22820

10 1.76197 1.73360
20 2.50741 2.50500
50 3.97946 3.97460

100 5.63485 5.64270

m

E
xp

ec
te

d
va

lu
e

1

2

3

4

5

0 20 40 60 80 100

Learning

Generating function approach

gen_fun_approach_p18 <- function(m){

p <- matrix(0 , nrow= m, ncol = m)

p[m,] <- 0.5*((m-1):0)

p[,m] <- 0.5*((m-1):0)

for(i in (m-1):1) {

for(j in (m-1):1) {

p[i,j] <- (p[i+1,j]+p[i,j+1])*0.5

}

}

p[1,1]

}

p18_results_2 <- sapply(ms,gen_fun_approach_p18)

46

Digital Dice

m

E
xp

ec
te

d
va

lu
e

1

2

3

4

5

0 20 40 60 80 100

47

Digital Dice

19 Electing Emperors and Popes

My attempt

Firstly, the close form solution for a simple form of the puzzle is

(
N

1

)(N∑
k=M

(
N

k

)
(1/N)k(1− 1/N)N−k

)

N <- 7

M <- 4

k <- M:N

N*sum(choose(N,k)*((1/N)^(k))*(1 - 1/N)^(N-k))

[1] 0.07105

trial_self_voting <- function(N, M, n){

candidates <- 1:N

biased_list <- sample(candidates, n)

mean(replicate(100000, any(table(sample(biased_list, N, replace=TRUE))>=M)))

}

trial_no_self_voting <- function(N, M, n){

candidates <- 1:N

biased_list <- sample(candidates, n)

get_votes <- function(){

sapply(1:N, function(z) sample(biased_list[biased_list!=z],1))

}

mean(replicate(100000, any(table(get_votes())>=M)))

}

trial_self_voting(N,M,N)

[1] 0.07053

puzzle_19_results_1 <- sapply(c(2, 3, 4), function(z)trial_self_voting(7, 4, z))

puzzle_19_results_2 <- sapply(c(2, 3, 4), function(z)trial_self_voting(25, 17, z))

puzzle_19_results_3 <- sapply(c(2, 3, 4), function(z)trial_no_self_voting(25, 17, z))

N = 7 N = 17(self voting) N = 17(no self voting)
2 1.00000000 0.10797000 0.04877000
3 0.52008000 0.00123000 0.00089000
4 0.28249000 0.00003000 0.00004000

Learning

The author gives additional reference to papers that derive closed form solutions.

48

Digital Dice

20 An Optimal Stopping Problem

My attempt

For n = 11, what is the probability of choosing the best for various sample sizes

best_partner <- function(m,n){

draw <- sample(n)

if(m==0) return(draw[1]==1)

if(m==(n-1)) return(draw[n]==1)

idx <- which(draw[(m+1):n] < min(draw[1:m]))[1]

if(is.na(idx)) return(FALSE)

draw[(m+1):n][idx]==1

}

n <- 11

m11 <- 0:(n-1)

n_11_sim <- sapply(m11, function(z) mean(replicate(120000,best_partner(z,n))))

n_11_sim <- data.frame("sample" = m11, "probability" = n_11_sim)

n <- 50

m50 <- 0:(n-1)

n_50_sim <- sapply(m50, function(z) mean(replicate(10000,best_partner(z,n))))

n_50_sim <- data.frame("sample" = m50, "probability" = n_50_sim)

sample probability
0 0.0913
1 0.2681
2 0.3503
3 0.3908
4 0.3972
5 0.3842
6 0.3517
7 0.3043
8 0.2435
9 0.1733

10 0.0910

49

Digital Dice

n=11

sample size

P
ro

ba
bi

lit
y

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 2 4 6 8 10

Maximum occurs for the sample size : 4

n=50

sample size

P
ro

ba
bi

lit
y

0.1

0.2

0.3

0 10 20 30 40 50

Maximum occurs for the sample size : 18

50

Digital Dice

What happens as n→∞

get_asymptote <- function(n){

m_temp <- 0:(n-1)

n_temp_sim <- sapply(m_temp, function(z) mean(replicate(10000,best_partner(z,n))))

c(m_temp[which.max(n_temp_sim)],max(n_temp_sim))

}

ns <- c(5, 10, 20, 50, 100)

asymp_results <- t(sapply(ns, get_asymptote))

asymp_results <- as.data.frame(cbind(ns,asymp_results))

colnames(asymp_results) <- c("n", "sample","prob")

asymp_results$ratio <- with(asymp_results,n/sample)

n sample prob ratio
5 2 0.4358 2.5000

10 3 0.4056 3.3333
20 8 0.3827 2.5000
50 18 0.3775 2.7778

100 36 0.3780 2.7778

For n = 11, what is the probability of choosing from top 2/3/4/5 for various sample sizes

best_partner_range <- function(m,n,top){

draw <- sample(n)

if(m==0) return(draw[1]%in%(1:top))

if(m==(n-1)) return(draw[n]%in%(1:top))

idx <- which(draw[(m+1):n] < min(draw[1:m]))[1]

if(is.na(idx)) return(FALSE)

draw[(m+1):n][idx]%in%(1:top)

}

cases1 <- cbind(11,rep(0:10,each=5),rep(1:5,times=11))

cases2 <- cbind(50,rep(0:49,each=5),rep(1:5,times=50))

n_cases1_sim <- apply(cases1,1,

function(z) mean(replicate(10000,

best_partner_range(z[2],z[1],z[3])))

)

n_cases2_sim <- apply(cases2,1,

function(z) mean(replicate(10000,

best_partner_range(z[2],z[1],z[3])))

)

puzzle_20_results <- cbind(cases1, n_cases1_sim)

puzzle_20_results <- rbind(puzzle_20_results,cbind(cases2, n_cases2_sim))

colnames(puzzle_20_results) <- c("n", "sample", "top", "prob")

puzzle_20_results <- as.data.frame(puzzle_20_results)

51

Digital Dice

puzzle_20_best_results <- ddply(puzzle_20_results,.(n,top),function(z){

z[which.max(z$prob),c("sample","prob")]})

n=11, top 2

sample size

P
ro

ba
bi

lit
y

0.2

0.3

0.4

0.5

0 2 4 6 8 10

n=11, top 2

sample size

P
ro

ba
bi

lit
y

0.2

0.4

0.6

0 10 20 30 40 50

These figures tell us that the curves of the probability of happiness versus the size of the sample lot have broad

maximums, which means that the value of the optimal sample lot size is not much more effective than are its

near neighbors. The bar graphs rise monotonically to their maximums and remain near those maximums over

an interval of values for the sample lot size, and then monotonically fall.

52

Digital Dice

For each population size and various criterion for evaluation, i.e. top 2/3/4/5, what are

the optimal sample size and probabilities ?

n top sample prob
11 1 4 0.3947
11 2 3 0.5617
11 3 2 0.6525
11 4 2 0.7252
11 5 2 0.7736
50 1 18 0.3790
50 2 16 0.5269
50 3 13 0.6159
50 4 10 0.6675
50 5 9 0.7075

Learning

The author computes the closed form probability of getting the best for a sample size r, given the population

is n

φn(r) =
r − 1

n

n∑
j=r

1

j − 1

For a given n, the above function needs to be maximized to obtain the optimal sample size.

obj_fun <- function(r,n){

(r-1)/n *sum(1/((r:n)-1))

}

ns <- c(5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000)

asymp_results <- sapply(ns, function(z){

res <- optimize(obj_fun, interval=c(2,z), n=z, maximum=TRUE)

c(res$maximum,res$objective)

})

asymp_results <- as.data.frame(cbind(ns,t(asymp_results)))

colnames(asymp_results) <- c("n", "sample","prob")

asymp_results$ratio <- with(asymp_results,n/sample)

asymp_results <- asymp_results[,c("n","ratio","prob")]

n ratio prob
5 1.2500 0.35000

10 2.5000 0.39869
20 2.2222 0.38195
50 2.5000 0.37396

100 2.5641 0.37080
200 2.6667 0.36945
500 2.6316 0.36836

1000 2.7027 0.36819
2000 2.7064 0.36804
5000 2.7115 0.36794

53

Digital Dice

21 Chain Reactions, Branching Processes, and Baby Boys

My attempt

set.seed(1)

probs <- c(0.4825, 0.2126*(0.5893)^(0:7))

m <- 100000

gen <- 10

results <- matrix(0, nrow = gen, ncol = m)

j <- 1

for(j in 1:m){

current <- 1

results[current , j] <- sample(0:8, 1, T, probs)

survived <- sum(results[current , j])

while(survived!=0){

current <- current + 1

if(current > gen) break

results[current , j] <- sum(sample(0:8, survived, T, probs))

survived <- results[current , j]

}

}

puzzle_21_results <- data.frame(

cases = c(" 2 males in second gen","4 males in second gen", "6 males in third gen"),

probability = c(mean(results[2,] == 2),mean(results[2,] == 4), mean(results[2,] == 6))

)

cases probability
2 males in second gen 0.0675
4 males in second gen 0.0408
6 males in third gen 0.0233

Learning

Besides the simulation results, the author uses recursive generating function approach to derive the closed

form solution for the above puzzle. If one assumes that the generating function at 0th generation is

f1(s) = p0 + p1s+ p2s
2 + . . .

and define the generating function of nth generation is fn(s) = f(fn−1(s)), the the coefficient of sk in the nth

generation gives the probability that there will be k descendents in the nth generation.

54

	The Clumsy Dishwasher Problem
	Will Lil and Bill meet at the Malt Shop?
	A Parallel Parking Question
	A Curious Coin-Flipping Game
	The Gamow-Stern Elevator Puzzle
	Steve's Elevator Problem
	The Pipe Smoker's Discovery
	A Toilet Paper Dilemma
	The Forgetful Burglar problem
	The Umbrella Quandary
	The case of missing senator
	How many runners in a marathon ?
	A Police Patrol Problem
	Parrondo's Paradox
	How Long Is the Wait to Get the Potato Salad ?
	The Appeals Court Paradox
	Waiting for Buses
	Waiting for Stoplights
	Electing Emperors and Popes
	An Optimal Stopping Problem
	Chain Reactions, Branching Processes, and Baby Boys

