Bayesian and Likelihood Principle
Stumbled on to an interesting paper that connects Bayesian ideas to Likelihood based inference. Both are related in the sense that Likelihood based Inference can be thought of a Bayesian Inference with uniform/vague prior. However when you get down to estimating and inferring from the data using these two philosophies, the math, the equations you use, the code you need to write are completely different.
This paper by Steel talks about whether a hard core Bayesian must accept Likelihood principle or not.