|  1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
 | with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())
  for e in range(epochs):
      idx     = np.arange(len(X_train))
      np.random.shuffle(idx)
      X_train, Y_train    = X_train[idx,:,:], Y_train[idx]
      for i in range(n_batches):
          x  = X_train[(i*batch_size):((i+1)*batch_size),:,:]
          y  = Y_train[(i*batch_size):((i+1)*batch_size),:,:]
          _, curr_loss = sess.run([optimizer, total_loss],
                                 feed_dict={tf_X:x, tf_Y:y})
          #print("Epoch:",str(e), "Batch:",str(i), "loss:",str(curr_loss))
      loss_val = sess.run(total_loss, feed_dict={tf_X:X_valid, tf_Y:Y_valid})
      print("Epoch:",str(e), " Loss:", loss_val)
 |