Gaussian Copula
Purpose
Input various Marginals and view Gaussian Copula .Load the libraries
> library(scatterplot3d) > library(copula) |
Create a Gaussian Copula with t Marginals with rho as 0.2 and 0.9
> par(mfrow = c(2, 2))
> gaus.cop <- ellipCopula(family = "normal", dim = 2, dispstr = "ex",
+ param = 0.2)
> gaus.mvdc <- mvdc(copula = gaus.cop, margins = c("norm", "norm"),
+ paramMargins = list(list(mean = 0, sd = 1), list(mean = 0,
+ sd = 1)))
> contour(gaus.mvdc, dmvdc, xlim = c(-3, 3), ylim = c(-3, 3), main = paste("Marginal gaussian (rho) = ",
+ 0.2))
> gaus.cop <- ellipCopula(family = "normal", dim = 2, dispstr = "ex",
+ param = 0.9)
> gaus.mvdc <- mvdc(copula = gaus.cop, margins = c("norm", "norm"),
+ paramMargins = list(list(mean = 0, sd = 1), list(mean = 0,
+ sd = 1)))
> contour(gaus.mvdc, dmvdc, xlim = c(-3, 3), ylim = c(-3, 3), main = paste("Marginal gaussian (rho) = ",
+ 0.9))
> t.cop <- ellipCopula(family = "normal", dim = 2, dispstr = "ex",
+ param = 0.2)
> t.mvdc <- mvdc(copula = t.cop, margins = c("t", "t"), paramMargins = list(list(df = 3),
+ list(df = 3)))
> contour(t.mvdc, dmvdc, xlim = c(-3, 3), ylim = c(-3, 3), main = paste("Marginal t (rho) = ",
+ 0.2))
> t.cop <- ellipCopula(family = "normal", dim = 2, dispstr = "ex",
+ param = 0.9)
> t.mvdc <- mvdc(copula = t.cop, margins = c("t", "t"), paramMargins = list(list(df = 3),
+ list(df = 3)))
> contour(t.mvdc, dmvdc, xlim = c(-3, 3), ylim = c(-3, 3), main = paste("Marginal t (rho) = ",
+ 0.9)) |
