Markov Chain Chap 9 - 9
Purpose
Chapter 9 Problem 11
> Q <- matrix(data = NA, nrow = 4, ncol = 4)
> Q[1, ] <- c(0, 1/4, 1/4, 1/4)
> Q[2, ] <- c(0, 0, 1/3, 1/3)
> Q[3, ] <- c(0, 0, 0, 1/2)
> Q[4, ] <- c(0, 0, 0, 0)
> N <- solve(diag(4) - Q)
> C <- c(1, 1, 1, 1)
> R <- matrix(data = NA, nrow = 4, ncol = 1)
> R[, 1] <- c(1/4, 1/3, 1/2, 1)
> N1 <- N
> NC1 <- N %*% C
> NR1 <- N %*% R
> N1
[,1] [,2] [,3] [,4]
[1,] 1 0.25 0.3333333 0.5
[2,] 0 1.00 0.3333333 0.5
[3,] 0 0.00 1.0000000 0.5
[4,] 0 0.00 0.0000000 1.0
> NC1
[,1]
[1,] 2.083333
[2,] 1.833333
[3,] 1.500000
[4,] 1.000000
> NR1
[,1]
[1,] 1
[2,] 1
[3,] 1
[4,] 1 |
It is no surprise that probability of reaching the absorbtion state is 1 irrespective of where you start from
Also the expected number of steps decreases as you go near the absorbtion status