Markov Chain Chap 9 - 21
Chap 9 - Exercise 21
> trmatrix <- function(n, p, r) {
+ p_l <- r * (1 - p)
+ p_r <- p * (1 - r)
+ p_0 <- r * p + (1 - p) * (1 - r)
+ Q <- matrix(data = 0, nrow = n, ncol = n)
+ diag(Q) <- rep(p_0, n)
+ for (i in 1:(n - 1)) Q[i, (i + 1)] <- p_r
+ for (i in 2:n) Q[i, (i - 1)] <- p_l
+ Q[1, 1] <- 1 - p
+ Q[1, 2] <- p
+ Q[n, n] <- 1 - r
+ Q[n, (n - 1)] <- r
+ return(Q)
+ } |
> simula <- function(trans, N) {
+ transita <- function(char, trans) {
+ sample(colnames(trans), 1, prob = trans[char, ])
+ }
+ sim <- character(N)
+ sim[1] <- sample(colnames(trans), 1)
+ for (i in 2:N) {
+ sim[i] <- transita(sim[i - 1], trans)
+ }
+ sim
+ } |
> n <- 20 > p <- 0.6 > r <- 0.3 > Q1 <- trmatrix(n, p, r) > rownames(Q1) <- 1:20 > colnames(Q1) <- 1:20 > Q1Simulate <- as.numeric(simula(Q1, 1000)) > n <- 20 > p <- 0.3 > r <- 0.6 > Q2 <- trmatrix(n, p, r) > rownames(Q2) <- 1:20 > colnames(Q2) <- 1:20 > Q2Simulate <- as.numeric(simula(Q2, 1000)) > n <- 20 > p <- 0.5 > r <- 0.5 > Q3 <- trmatrix(n, p, r) > rownames(Q3) <- 1:20 > colnames(Q3) <- 1:20 > Q3Simulate <- as.numeric(simula(Q3, 1000)) > n <- 20 > p <- 0.3 > r <- 0.3 > Q4 <- trmatrix(n, p, r) > rownames(Q4) <- 1:20 > colnames(Q4) <- 1:20 > Q4Simulate <- as.numeric(simula(Q4, 1000)) |
> par(mfrow = c(2, 2))
> plot(Q1Simulate, type = "l", col = "blue", main = ("traffic intensity 0.6/0.3"))
> plot(Q2Simulate, type = "l", col = "blue", main = ("traffic intensity 0.3/0.6"))
> plot(Q3Simulate, type = "l", col = "blue", main = ("traffic intensity 0.5/0.5"))
> plot(Q4Simulate, type = "l", col = "blue", main = ("traffic intensity 0.3/0.3")) |

Average in State j
> par(mfrow = c(2, 2)) > plot(table(Q1Simulate)/10) > plot(table(Q2Simulate)/10) > plot(table(Q3Simulate)/10) > plot(table(Q4Simulate)/10) |
Average Queue Length
> mean(Q1Simulate) [1] 19.121 > mean(Q2Simulate) [1] 2.079 > mean(Q3Simulate) [1] 15.547 > mean(Q4Simulate) [1] 12.575 |